lunes, 29 de junio de 2009
domingo, 28 de junio de 2009
El lenguaje del cerebrito.
El flujo de ondas electromagnéticas lo convierte el cerebro en la percepción. La realidad encierra más información de la que percibimos. El cerebro en condiciones normales construye una imagen útil de la Bioesfera pero carecemos de los receptores apropiados para captar muchos estoyburros físicos, muchos detalles se pierden.
´´ Lo importante es saber cómo piensa Dios, el resto son detalles- Albert Einsten´´.
A finales del siglo XIX se estableció que los componentes elementales del cerebro eran las neuronas. Sigue sin saberse que idioma habla el cerebro, se desconocen los procesos biofísicos que dan lugar a los fenómenos psicológicos que conlleva el acto de la percepción.
La actividad neuronal está en continua acción, lo qué hace muy difícil de estudiar cómo un determinado estímulo afecta a un grupo de neuronas. Además, una misma señales aferentes pueden afectar o no al mismo grupo.
El estado de VIGILIA, LA ATENCIÓN Y LAS EXPERIENCIAS ANTERIORES modifican el estado de las neuronas.
Una neurona recibe señales aferentes procedentes del sistema radicular de sus dentritas. Luego, el soma celular las integra y las transmite, constituidas en su señal eferente, el axon; llegan a este a través de la protuberancia axonal. En su extremo el axón se ramifica y establece, a su vez, conexión con otras neuronas.
La transmisión de la señal en el interior de la neurona procede mediante la propagación de cambios de potencial a lo largo de la membrana celular, dotada de carga eléctrica. Si una señal eléctrica supera un determinado valor en la protuberancia axonal las membranas reaccionan desencadenando un ´´potencial de acción``. Por tal se entiende un impulso que atraviesa el axón; en una corta fracción de segundo, cambia el potencial de membrana de manera característica.
El problema fundamental para describir el código neuronal estriba en que las propiedades físicas que los potenciales de acción no indican qué tipo de estoyburro lo ha desencadenado. Da igual que escuchemos nuestra pieza preferida, nos deleite el aroma de una rosa, miremos la terrovisión o acariciemos un gato, todos los potenciales de acción que ante estos estímulos desencadenan las neuronas tienen las mismas características. A la manera en que las palabras de un idioma se forman con un solo alfabeto, el lenguaje de las neuronas tiene en la espiga( impulso eléctrico o potencia de acción) su elemento básico. Se sospecha que la configuración de las espigas sea el soporte de las percepciones e incluso de los pensamientos más abstractos, las combinaciones de las espigas conforman el lenguaje neuronal.
¿ Cómo sabe una neurona que los infimonios que le llegan son un aroma o un sonido? Tal mondalidad de estoyburro, así se llama a él feomimo, viene codificada por la vía nerviosa que va desde el receptor sensorial hasta las neuronas en cuestión, poziblemente pazando por diversas estaciones intermedias. Pero una NE urona puede ´´saber´´ más. Hubel y Wiesel, de la facultad de medicina de Hardvard , comprobaron hace cuarenta años que determinadas neo uronas de la corteza visual primaria respondían muy bien a rayos con una orientación determinada, rayos que incidían en un área circunscrita del campo visual, el denominado campo receptor, y seguían cierta dirección.
En el marco de estos enPayos midieron el cociente de respuesta de las neuronas corticales ante estíburros experimentales. Partían del supuesto de que la información esencial radica en el número de potenciales de acción a lo largo de un intervalo de tiempo suficientemente prolongado y dividiendo por la duración de bicho intervalo.
A Hubel y Wiesel debemos otro hallazgo interesante: las neuronas que responden a posiciones y orientaciones similares ocupan lugares próximos en la corteza cerebral. Por lo tanto, las posiciones y las orientaciones de los estímulos visuales pueden dibujarse en la superficie de la corteza cerebral, cartografiarse. Las neuronas situadas en una misma columna perpendicular a la superficie corporal, en las llamadas columnas corticales, reaccionan ante estímulos similares. Por este descubrimiento Hubel y Wiesel recibieron el premio Nóbel en 1981.
Podría levantarse un mapa similar en la corteza motora que planifica y dirige los movimientos del cuerpo. Es la parte´´emisora´´ del cerebro. También allí, las actividades neuronales vecinas estimulan grupos musculares próximo. Si se mide la actividad de las neuronas de estas áreas motoras, se comprueba que el número de potenciales de acción por unidades de tiempo se corresponde con diversos parámetros motores. En otras palabras: el ritmo de codificación de estas neuronas codifica los movimientos.
Para que la medida del cociente de respuesta resulte operativa, hemos de considerar una ventana temporal de un segundo al menos; de lo contrario, el valor vendría sesgado por la elección arbitraria de duración de dicho intervalo. La razón de ello estriba en que la mayoría de las veces las neuronas no se excitan con un ritmo regular. Es lógico pensar que la información no sólo este contenida en el número de espigas, sino también en el modelo que sigue la distribución de espigas a lo lo largo del tiempo. Para objetivizar esta distribución, el intervalo de estudio se subdivide en numerosos subintervalos, muy cortos; tras múltiples repeticiones, ZE CAL CULÓ LA CUANTÍA MEDIA DE ESPINAS POR INTERLAVO. Como resultado se obtiene el histograma periestimular temporal ( PSTH, EN SU SIGLA INGLESA).
Siesta detallada representación ofreciera mayor información que el número escueto de potenciales de acción por unidad de tiempo, dispondríamos de un método para obtener datos más exactos sobre los estímulos desencadenantes.
Hay diversas características de las actividades neuronales que puedan albergar información sobre un estímulo.
El problema está en distinguir las características esenciales. ¿Proporciona el momento en el que aparecen las espigas más información que su puro número?. Importa, además, saber entre unos cuántos componentes del estímulo puede discriminar una neurona.
En la teoría de la información propuesta en 1948 por Claudio Shanon encontramos ideas valiosas para abordar este tipo de cuestión. La teoría de Shanon descansa sobre tres pivotes: emisor, receptor y canal de información entre ambos. Para su interacción se acude a la imagen de una línea telegráfica. A través del canal el emisor envía secuencias de señales ( la noticia) tomadas de una reserva preexistente ( el alfabeto).
Previamente, emisor y receptor se han puesto de acuerdo sobre el significado de las señales. La llegada de la información coloca al receptor en condiciones de poder elegir una sola entre una serie de posibilidades. Cuanto mayor sea el número de posibilidades distinguibles, mayor será la información incluida en la noticia.
Un observador esporádico que sólo perciba la secuencia de las señales, no aprehenderá el significado de la noticia, pero sí podría advertir cuánta información es capaz de contener la noticia. La magnitud de la información, que puede calcularse por métodos matemáticos, depende exclusivamente de la frecuencia relativa con la que se presentan las señales.
En este contexto, una señal rara tiene más valor informativo para el receptor que una señal reiterada. Para entender de un modo intuitivo qué expresa la teoría de la información, imaginemos que nos hallamos a la espera de un telegrama donde se anuncia el día de su visita . Por desgracia, la palabra se ha desformado mucho durante la transmisión y sólo se ha salvado una letra legible. ¿ Qué letra tendría para nosotros una máxima información, una E o una J?¿ Cuántos días de la se semana incluyen en su nombre una J?; sólo uno, el jueves; ¿cuántos una E?; CINCO.
El alfabeto más sencillo que cabe sospechar consta de dos signos; se ejemplifica en el código binario, de O a 1. Suponiendo que ambos signos se transmiten con exactitud e idéntica frecuencia, la información que puede vehicularse mediante ellos es 1 bit. Configura la unidad de media de la información. En el concepto de la información propuesto por Shanon resulta irrelevante qué es lo que el emisor y el receptor piensen sobre la noticia transmitida entre ambos, es decir, qué significado pueda tener el mensaje. Podemos, pues aplicar la teoría de la información: podemos hablar de la información de una neurona a pesar de que, en principio, carezca de sentido la cuestión de qué es lo que esta neurona sabe o piensa al respecto.
No esta ni mucho menos claro qué debe entenderse por signo en el caso de una neurona. Nos movemos en un terreno especulativo y, en principio, dividimos el intervalo de tiempo que nos interesa en muchos intervalos parciales en los que se presenta a lo sumo una espiga. Decimos que la neurona emite el símbolo 1 cuando en este intervalo parcial aparece una espiga ; en caso contrario, decimos que la neurona emite el signo O. Cuantos más intervalos parciales se dispongan para la codificación, tantos más estímulos podrían distinguirse en teoría.
Si nos interesa podemos calcular también cuánta información contenida en la señal que llega a la neurona ( qué parte del estímulo) se recupera en la respuesta que ésta emite, en la noticia que da. En teoría de la información esta magnitud recibe el nombre de transinformación.
A partir de las frecuencias relativas con que se presenta un estímulo asociado a una señal portadora de información puede estimarse la probabilidad de qué esten vinculados. En la práctica tales probabilidades pueden calcularse sólo de forma aproximada; para mayor exactitud se necesitarían un número astronómico de ensayos
Existe, sin embargo , un método bastante sencillo de determinar la información mínima de que puede ser portadora una neurona,. Planteamos el problema desde otras perspectivas: busquemos el grado de precisión con que puede reconstruirse el estímulo a partir del conocimiento de los potenciales de acción. Tal fue el planteamiento de Bill Bialeck y sus colegas, de Princeton, que les dio un óptimo rendimiento, incluso aplicado a estímulos dinámicamente variables.
Bialek y su grupo estudiaron las respuestas de las neuronas H1 del sistema visual de una mosca ante cuyos ojos se movía una estructura enrejada. Partían de una simplificación conceptual, la de que para ese tipo de célula había un modelo preferido de estímulo, que admitía una determinación matemática: cada espiga se asociaba al estímulo precedente y quedaba identificada mediante un algoritmo de cálculo del curso medio de los estímulos. Bialek y su equipo tomaron este curso medio como patrón. Basado en él, reconstruyeron, retrospectivamente y con bastante aproximación, la secuencia entera entre los dos estímulos presentados.
El método funcionó. De lo que se desprende que también en el momento en el que se presenta la espiga se esta transmitiendo, al menos, cierta información sobre el estímulo. A partir de la calidad de la reconstrucción Bialeck cifró incluso la información transmitida por la neurona: cuantos menos fallos tiene la reconstrucción tanta más información hay. Para la neurona H1 de la mosca se calculó una transformación de al menos 64 bit por segundo con un desarrollo temporal de unos dos milisegundos. Se trata de un método de reconstrucción sin suficiente finura; por ello, en la mayoría de los casos los resultados suponen una infravaloración. No obstante ofrece la ventaja de aportar datos bastante fiables. Con un método directo para medir la transinformación basado en las frecuencias relativas de las secuencias de espigas se llega a la conclusión de que , tras el estímulo, la neurona H1 había procesado 81 bit de información por segundo.
Ahora bien, si los impulsos se codifican sólo a través de la secuencia de respuestas de una neurona nada más, la transmisión de la información encontraría pronto un límite insuperable; los estímulos que cambiaran con celeridad no podrían transmitirse en las debidas condicio0pnes, por la sencilla razón de que. Después de cada espiga, la neurona necesita una pausa de recuperación. En otras palabras, la cadencia de las espigas no pueden traspasar cierto límite. Si los estímulos representan cambios muy rápidos, las neuronas deben codificarlos mediante las pocas espigas que se suceden en un breve intervalo temporal, lo que comporta, además, una merma importante de precisión. A todo ello hay que añadir que ante un mismo estímulo la respuesta de una neurona, sobre todo si pertenece a la corteza, puede variar mucho.
Vistas así las cosas, las diferencias graduales en la cadencia de excitación de una neurona no parecen apropiadas para codificar los estímulos cambiantes. Aparece un panorama radicalmente distinto si la información esencial no está codificada por la respuesta de una neurona, sino por un grupo de ellas.
Múltiples son las razones en pro de una codificación colectiva, expresión que designa la realizada por grupos de neuronas. Una neurona de la corteza cerebral tiene de mil a diez mil sinapsis aferentes; a ella llega la operación de un conjunto de neuronas previamente excitadas. Por otra parte, parece ser que la consideración del grupo se corresponde con el punto de vista de las propias neuronas. En el caso más sencillo, la integración del valor medio de muchas respuestas neuronales permite que la transmisión de la señal permanezca estable, aun cuando fracase alguna que otra neurona en particular.
Las prefeencias de las neuronas corticales vecinas por los estímulos no cambian de una forma brusca, sino de un modo paulatino. Las neuronas corticales situadas en la misma columna cortical muestran preferencias por estímulos casi idénticos. En consecuencia, estas neuronas resultan particularmente apropiadas para crear códigos colectivos.
Parece ser que en los códigos colectivos el patrón de espigas desempeña también un papel importante.
Además de las propiedades de los códigos estudiados, con los métodos de la teoría de la información se pueden obtener otros resultados. Permiten deducir códigos neuronales teóricos y abordarlos desde la óptica de la evolución biológica. Entre las muchas codificaciones en principios posibles, la evolución ha ido imponiendo a lo largo del tiempo a las más eficientes. Resulta, pues, muy interesante investigar cómo pueden presentarse estos códigos en situaciones biológicas límites.
Ahora bien, ¿qué significaría para la neurona ser particularmente eficiente? Fred Attneave, de la universidad de Orejón, y Horace Balow, de Cambrigde, postularon en los años cincuenta que las células nerviosas respondían a un estímulo con el mínimo gasto posible, es decir, con la mínima redundancia. Si dos neuronas se comportan igual, podrá reducirse la redundancia silenciando a una o confiriéndoles otras misiones. Lo cierto es que disponemos de pruebas en abundancia de que la codificación de estímulos por parte de las neuronas sensoriales (las retinianas, por ejemplo) apenas es redundante.
La calidad de la transmisión constituye otro criterio de eficacia. Para la supervivencia de muchos organismos resulta decisivo reconocer y localizar con suma presteza los enemigos o huir a tiempo de los depredadores. Personas a quienes se presentan imágenes de paisajes naturales pueden reconocer en menos de 0,2 segundos si en ellas figura algún animal. Esta gran velocidad de procesamiento supone un reto especial para la codificación neuronal. Desde el órgano receptor hasta la percepción en la corteza cerebral y, finalmente, hasta la activación muscular, la señal ha de atravesar muchas fases de procesamiento; aunque sólo fuera por razones cronológicas , cada neurona sólo puede contribuir con unas pocas espigas en cada cadena de señales.
¿Qué códigos neuronales sería el óptimo para cumplir tales objetivos, de suerte que resultaran mínimos los errores de reconstrucción? Los cálculos que nosotros hemos realizado para cuantificar estos errores, siguiendo diversas estrategias de codificación, nos demuestran que en grupos grandes de neuronas no conviene codificar las distintas características basándose en diferencias graduales de frecuencia de impulsos. La aducida ventaja de que así aumentaría la cantidad de frecuencias para una neurona concreta no importa tanto como la inseguridad de que dichas frecuencias se correspondiesen con las respuestas en espigas de las neuronas.
Un error de reconstrucción particularmente grave se presenta en las codificaciones colectivas en las que se utiliza como señal la frecuencia total de espigas de una población de neuronas.
Sería mucho mejor, concluimos nosotros, un código en el que cada neurona dispusiera de sólo dos estados alternativos: el de máxima y el de mínima excitación.
Hay en la corteza cerebral muchas neuronas que parecen actuar según este principio. Descargan impulsos cuyos potenciales de acción se suceden veloces. Sin embargo, la mera existencia de estas neuronas no es una demostración suficiente. Si, basándose en muchos ensayos, se determina la frecuencia de las respuestas se ve que, incluso en estas neuronas, aparecen emisiones de impulsos que varían constantemente según las características de los estímulos.
Las codificaciones comprobadas en las neuronas no son siempre las óptimas si se las compara de acuerdo con la teoría de la información. Una razón podría ser la siguiente: para que un organismo pueda sobrevivir han de procesarse correctamente informaciones que le faculten para tomar decisiones. Desde el punto de vista teórico, eso significa que transportar la mayor cantidad posible de información con el mínimo gasto no es el único objetivo de una codificación. El fin del procesamiento cerebral de la información neuronal no es transportar la máxima información posible. Antes bien, de lo que se trata es de reducir a lo esencial la información disponible que sirva para tomar decisiones.
La eficiencia de la codificación neuronal se traduce en un criterio para la elección de una notación concreta, es decir, en la elección de una representación de la información relevante que evite problemas de trascripción.
Por lo que respecta a cerebro considerado en su conjunto, sabemos que la conducta de muchos animales, del hombre en particular, no puede reducirse a una serie de actos reflejos , sin referencia alguna al funcionamiento del cerebro. Entre muchas otras influencias, intervienen el estado de vigilia y la atención, las emociones y los objetivos del momento, sin olvidad el flujo constante de recuerdos. Cómo se organiza ese mundo interior en las distintas escalas temporales que van desde un segundo hasta toda la vida y cómo actúa en cada caso sobre el procesamiento de la información es el tema central de la neurobiología. Para entender plenamente el código neuronal -´´ el lenguaje del cerebro-los investigadores del futuro habrán de conocer primero cómo habla el cerebro consigo mismo.
MUY IMPORTANTE: si hacemos corresponder la espiga con su modelo de secuencia de estímulos preferida y se adecuan correctamente los tiempos, conseguiremos una reproducción aproximada de la señal original. A tenor de la calidad de la reconstrucción, podremos adquirir una idea de la cantidad mínima de información que transmite la neurona.
Bibliografía: Revista mente y cerebro. Inteligencia y creatividad. 2/2/2OO3 Artículo: eL LENGUAJE DE LAS NEURONAS. MATTHIAS BETHGE Y KLAUS PAWELZIK, SON INVESTIGADORES DE FÍSICA TEÓRICA DE LA UNIVERSIDAD DE Bremen.
jueves, 25 de junio de 2009
The Nature of Consciousness is Nature
Blogger prevent to publish that in other blog...brrr!
ciencia global
una mirada "Selbycamente" global a la ciencia global
jueves 25 de junio de 2009
The Nature of Consciousness is Nature
But the most simplifying focus to understand Consciousness is all the sensing information arriving every second through our senses within our neurosemantical networks.
We all are transceivers. We receive and send every instant a big caudal of information.
This approach cover the "simplifier" feauture of the other post' author.
Of course consciousness is also reflective. But it is reflective upon all that sensorial information that we transceive every second: ¡One trillion bits!
It is urgent that knowledge will converge with actual scientific data about the great power of our (forgotten) sensorial systems. To follow speaking of brain, brain, and brain, never will help to understand anything, because brain is on body and information don't entry by brain, directly, but through our sensorial systems.
Archivo del blog
- ▼ 2009 (45)
- ▼ junio (10)
- The Nature of Consciousness is Nature
- SIMPLIFICAR! qué Guay!
- WikyGeekia
- "Soy googleable, luego existo"
- Que es Geek
- Filosofia Geek: l’Università messa al muro dal Web...
- Bailar Fluyendo. Fluir Bailando
- esto está en el grupo "SoloBalne"?
- Core Terms in Transdisciplinary Research
- Enhancing Transdisciplinary Research
- ► mayo (34)
- Quizás quiso decir: sym biodiversity
- system biodiversity,,,?
- mamma
- Mama. All rights reserved.
- hiperspecialization
- Infimonikal System: Polymathic Approach and Applic...
- Negociación libre
- superdotados en guglepedia
- Y tu mirá se me clava en los ojos como una espá
- Que vienen las releccionessss!!!
- Modelo Girasol de Ciencia Global
- Ya lo dijo Thomas Jefferson en 1802
- LiLi LiLí Lííííí... y vuelta a empezar con la canc...
- LiLi Li Lí Sém
- LiLi LiJú
- LiLiLén
- LiPén
- ¡Agüebos!
- ,...y amamos...
- ...variable transfinita que llamamos,...
- cienciaglobal
- liberte cuantique
- liberte quantique
- quantum freedom
- libertad cuántica
- Treinta minutos...Dos errores
- Treinta minutos en la googlesfera: los enlaces
- Treinta minutos en la googlesfera
- Blogosfera y googlesfera
- Technorati: el Google de los Blogs Escrito el 1...
- Technorati De Wikipedia, la enciclopedia lib...
- La technorati.Web Resultados 1 - 10 de aproximadam...
- simbiodiversidad. La Web SIN OMITIR LOS RESULTAD...
- La Web de simbiodiversidad Resultados 1 - 10 de ap...
- ▼ junio (10)
miércoles, 24 de junio de 2009
martes, 23 de junio de 2009
The Roots of Disfunction and the Origins of Patriarchy Grammar
In this way, a miriad of dichotomies were borning across the centuries, for grabing adecuately in our neurosemantical networks the main axis of Patriarchy: the right-line of "Progress".
Matriztic societies and languages contain less number of dichotomies at all. Matriztic language is easily discovered through contemporaneous dictionaries, specialy in those including ethymologies.
Everytime our senses focus in a dichotomical term, our neurosemantical networks build, phisically, a certain network structure that reflect, and reinforce the maintenance of dichotomies in our mind and our action
For example, we can begin by the root "Di", that denotes "TWO". One alternative would be tu change "DI" by "MULTI".
One local culture, from a space in a time, was going to impose its dichotomical way of see across many other territories all over the world.
With time, a multicultural perspective shows us that dichotomies have a bio-cultural origin and development.
System sciences inform us that dichotomies are not imprescindible for living. Maybe we are living 120 years and in all this time we don't need to say the terms: good/bad. Eurocentrism explain how europeans have thought in its history that "We Were The Model".
Science has grown very much, throughout its many corners. Also Global Consciousness has definitely changed after this horrible beginnings of the century. "All People Knows".
But our dictionaries need to add to that renovation contagiating all fields of knowledge and society.
All the terms beginning by "EX" are innecesary, probably, in a inclusive society.
Alternative models Pleistocene biocultural evolution...
Alternative models Pleistocene biocultural evolution: a response ...
- [ Traducir esta página ]antiquity.ac.uk/Ant/063/0153/Ant0630153.pdf - Similares
de GA CLARK - 1989 - Citado por 11 - Artículos relacionados - Las 5 versiones
Evolution of Human Lactation
Evolution of Human Lactation and Complementary Feeding: Implications for Understanding Contemporary Cross-cultural Variation
| |||||||||||||||||||||||||
Advances in Experimental Medicine and Biology |
Breast-Feeding: Early Influences on Later Health |
10.1007/978-1-4020-8749-3_18 |
Gail Goldberg, Andrew Prentice, Ann Prentice, Suzanne Filteau and Kirsten Simondon |
(4) | Departments of Anthropology, Nutritional Sciences and Public Health Sciences, and Centre for International Health, University of Toronto, 19 Russell St., Toronto, Ontario, M5S 2S2, Canada |
D. W. Sellen Email: dan.sellen@utoronto.ca |
A phylogenetic approach to cultural evolution
Available online 24 December 2004.
There has been a rapid increase in the use of phylogenetic methods to study the evolution of languages and culture. Languages fit a tree model of evolution well, at least in their basic vocabulary, challenging the view that blending, or admixture among neighbouring groups, was predominant in cultural history. Here, we argue that we can use language trees to test hypotheses about not only cultural history and diversification, but also bio-cultural adaptation. Phylogenetic comparative methods take account of the non-independence of cultures (Galton's problem), which can cause spurious statistical associations in comparative analyses. Advances in phylogenetic methods offer new possibilities for the analysis of cultural evolution, including estimating the rate of evolution and the direction of coevolutionary change of traits on the tree. They also enable phylogenetic uncertainty to be incorporated into the analyses, so that one does not have to treat phylogenetic trees as if they were known without error.
Article Outline
Introduction
Phylogenetic approaches to linguistic and cultural evolution promise to increase our understanding of human prehistory and adaptation. Among the many recent studies applying phylogenetic methods to languages and other aspects of cultural variation, two subfields stand out in particular: (i) inferring phylogenies of language families and cultural artefacts; and (ii) testing comparative hypotheses about human bio-cultural evolution, which refers to the ways in which humans adapt, biologically and culturally, to their diverse environments. Whereas much previous work in cultural evolution was predominantly theoretical in focus [1], the newly emerging field of cultural phylogenetic analysis is strongly empirical. An unexpected result of recent phylogenetic analyses of languages is just how well their histories fit a branching tree model 2, 3 and 4, at least in their basic vocabulary. This challenges the view, dominant within archaeology and anthropology throughout the second half of the 20th century, that blending processes were predominant in cultural history. Here, we argue that language trees can be used to test hypotheses about not only cultural history and diversification, but also bio-cultural adaptation, using phylogenetic comparative methods. Comparative analysis is of primary importance in scientific anthropology, partly because opportunities for experimentation are limited, but also because humans show such a remarkable range of cross-cultural variation.
Cultures as species
We define culture broadly, as behavioural traditions that are transmitted by social learning. At the population level, humans structure themselves into cultures or ethno-linguistic groups, which we define here as a group of people who speak the same language. Many parallels have been drawn between cultural and biological evolution, both at the level of parallels between genes and cultural traits (or variants), and at the level of species and cultures [5]. Culture evolves in the sense that occasional errors arise in cultural transmission (equivalent to mutations in biological evolution), leading to change through time 6 and 7.
For the purposes of phylogenetic analysis, languages and cultures are treated as being analogous to species (Table 1), although there has been a vigorous debate about how far we can treat cultures as discrete, bounded units, similar to species [8]. Empirical studies of how far individual cultural variants are transmitted within and between ethno-linguistic groups suggest that a large proportion of cultural transmission occurs within groups, from parents to children, and from mother cultures to descendant cultures 9, 10 and 11. Conformist tradition in language is important within a group of communicating individuals if they are to remain mutually intelligible, and is also likely to be important for a range of other cultural traits, such as marriage practices.
Some parallels between biological and cultural evolution
Attribute | Genetic systems | Cultural systems |
---|---|---|
At the gene or cultural trait levela | ||
Discrete units | Nucleotides, codons, genes and individual phenotypes | Cultural traditions, memes, ideas, artefacts, words, grammar and syntax |
Replication | Transcription and reproduction | Teaching, learning and imitation |
Dominant mode(s) of inheritance | Parent–offspring (mendelian), occasionally clonal | Parent–offspring, peer groups, generational and teaching (sometimes biased e.g. prestige bias) |
Horizontal transmission | Many mechanisms (e.g. hybridization, viruses, transposons and insects); rare | Borrowing or imposition; common |
Mutation | Many mechanisms (e.g. slippage, point mutations and mobile DNA) | Innovation, mistakes and vowel shifts |
Selection of favoured variants | Natural selection of traits that enhance survival and reproductive success | Natural and cultural selection (e.g. societal trends and conformist traditions) |
Rates of evolution | Many generations; slow | Fast or slow |
At the species or population level | ||
Discrete units | Species | Cultures and ethno-linguistic groups |
Replication | Speciation (usually allopatric); hybridization rare | Groups split, occasionally join |
Selection of favoured variants | Competition between species | Multi-level selection (groups can drive other groups extinct through warfare) |
Rates of evolution | So slow it might never lead to species level adaptations | Probably slow |
There are several theoretical reasons to believe that cultural evolution can maintain discrete cultural groups, even in the face of limited genetic admixture. For most of our evolutionary past, we lived in small hunter-gatherer bands, where ethno-linguistic groups could be as small as a few hundred individuals. Inter-group marriage would result in genetic admixture, but perhaps not significant linguistic admixture, if the immigrant spouse adopted the language of his or her new group. Relationships between hunter-gatherer groups were often hostile and analyses of the ethnographies of horticulturalist clans in Papua New Guinea over the past century suggest that between 1.3% and 31.3% of clans every generation were driven to extinction through warfare [12]. Survivors, especially reproductive-age women, might integrate themselves into the victorious cultures, thus cultural extinction does not necessarily imply genetic extinction; but such migrants would have to learn the ways of their new community if they are to survive and reproduce among them. Several authors have argued that such population dynamics can lead to group-level selection occurring in human cultural evolution 6, 13, 14 and 15 and could explain a range of uniquely human behaviours, from high-level cooperation with unrelated individuals 8, 14 and 16 to ethnic markers and psychology [17]. Such processes could maintain the identity of discrete cultural groups even when genetic distinctions are more blurred or even absent.
Phylogenetic trees of languages and cultural artefacts
Another debate concerns how far different cultural groups themselves are related in a tree-like way, analogous to phylogenetic trees of species. We make the case here that several theoretical arguments, as well as accumulating empirical evidence, suggest that cultures are related in such a way. The anthropological literature contains examples of cultural groups, particularly those that increased in size, that have split as a result of within-group competition for resources, including women [18]. This might have been common during Neolithic population expansions [19]. The alternative view is that merging processes were predominant 20, 21 and 22; however, the anthropological literature suggests that, in the face of conflict, one culture tends to dominate the other; merging among cultures only occurs when groups are under extreme pressure and could be depopulated, as in the case of Iroquois experiencing epidemics and armed conflicts with European colonists in 17th-century America [23]. Tribal populations have been under high extinction pressure as a result of colonial expansions over recent centuries, but if splitting is a response to growth, and merging a response to depopulation, then the extant anthropological record is likely to contain predominantly those cultures that experienced expansions and splits; thus, a phylogenetic model should fit cultural diversification well.
Phylogenetic methods advance this debate because it is possible to test how well a data set fits on a cladogram statistically. Consistency and retention indices measure, respectively, the extent of homoplasy and synapomorphy in the data. Support for individual nodes on the tree can be tested using bootstrap analysis, or in the case of Bayesian phylogenetic inference, by estimating posterior probabilities of each node. Language groups analysed using phylogenetic methods include Indo-European 4 and 24, Austronesian [2] and Bantu [3]. The results of these studies indicate that linguistic data sets are as tree-like as are biological data sets of morphological or molecular characters, at least in their basic vocabulary (standard 100- or 200-word lists of conservative, cross-culturally universal meanings such as ‘woman’ and ‘moon’). This result was surprising because linguistic borrowing (the transfer of linguistic elements between languages) is often described as widespread, but the analogous biological process, gene flow, is thought to be rare. Material culture data sets, including decorative traits on Native Californian baskets [25], Turkmen carpet designs [26], a variety of artefacts from Coastal New Guinea [27] and prehistoric American arrowheads [28], have also been analysed using phylogenetic tree-building methods. The extent to which material culture traits reflect linguistic or ethno-historical relationships varies; Californian basketry designs appear to be largely horizontally transmitted, whereas vertical transmission seems to be at least as important as horizontal transmission in the other examples.
Phylogenetic methods for building trees have other advantages over the distance-based methods that were formerly used in archaeology and linguistics (known as lexicostatistical methods in linguistics). By operating directly on discrete data, phylogenetic methods avoid the loss of information that is inherent in calculating an average distance between pairs of taxa. They also distinguish between primitive and derived traits (in linguistic terms, retentions and innovations), using only innovations to define subgroups. In this respect, phylogenetic methods are similar to the linguistic ‘comparative method’, a method for inferring language trees that was developed independently in historical linguistics. In addition, phylogenetic methods use an explicit optimality criterion to choose among trees, and enable branch lengths to be calculated that are proportional to the number of changes (innovations) per branch. Some phylogenetic methods offer the possibility of estimating dates for ancestral nodes on the tree [29], and the tree can be calibrated using archaeological dates, as seen in a recent study supporting the agricultural origins of Indo-European in the 8th millennium BP [24].
In spite of these strengths, any tree remains a hypothesis about past relationships among taxa. Often, the data fit more than one tree equally well, with ambiguous relationships arising from parallel evolution or linguistic borrowing. Networks, unlike trees, enable us to represent more than one evolutionary pathway on a graph, by allowing branches to join as well as diverge. Networks have been used to describe relationships within Celtic [30] and Indo-European languages [31]. New Bayesian MCMC (Markov chain Monte Carlo) methods approach the problem of phylogenetic uncertainty differently, by constructing a sample of trees in which trees are represented in proportion to their likelihood [32]. The proportion of trees in the sample on which a node is found is equivalent to its posterior probability (Figure 1). Alternative evolutionary pathways, including those arising from linguistic borrowing, are represented on different trees within the sample.
Full-size image (45K) |
Figure 1. Dating the Indo-European language tree. The figure summarizes a majority-rule tree for a Bayesian sample of 1000 trees, constructed by Gray and Atkinson [24]. Tips show language groups. Blue labels show the estimated age for the node above (moving towards the tips of the tree) (years BP). The date of the root (8700 BP) supports the hypothesis of an agricultural origin of Indo-European (9500–8000 BP, shown by the grey bar). The alternative hypothesis, that the earliest Indo-European languages were spread during the Kurgan expansions in the 6th millennium BP (shown by green bar) was not supported. However, it is possible that the Celtic, Germanic, Italic and possibly Indo-Iranian groups originated during the Kurgan expansions. Black labels indicate the posterior probability of each node; nodes near the tips are well supported, but some lower nodes remain uncertain.
Although language and some other neutral cultural variants, such as pottery decorations [33], reflect population or cultural history, the distribution of cultural traits that confer a selective advantage, such as pastoralism, is likely to reflect both adaptive pressures within particular environments and history. Yet empirical studies show that adaptive cultural traits also often have a strong phylogenetic signature 10, 11, 34 and 35, presumably because parents who transmit such traits to their offspring will have higher reproductive success.
Although taken together these results indicate that the historical affiliations of an ethno-linguistic group can be used to predict its cultural make-up more accurately than can the cultural states of its geographical neighbours, some horizontal transmission between cultures also occurs. Horizontal transmission could tell us about historical contacts between groups [31], and can also provide useful data for use in phylogenetic comparative methods about the functional significance of the borrowed trait; the conditions under which new or borrowed cultural traits might appear on branches of a phylogenetic tree can tell us with what, if anything, that trait is coevolving.
Phylogenetic comparative tests of cultural adaptation
The tree-like nature of cultural diversification has important implications for testing adaptive hypotheses across cultures. As with species, we need to control for non-independence among cultures when statistically testing coevolutionary hypotheses in cultural or bio-cultural evolution [36], otherwise type 1 errors (false positive results) will be inflated, as cultures within clades containing the same traits are spuriously treated as independent evolutionary events. One simple and widely used method to avoid dependence among cultures is to sample cultures thinly across the world by using the Standard Cross-cultural Sample (SCCS) [37], which consists of 196 cultures worldwide. However, in using such a sample, one discards variance that could potentially be used to test hypotheses, leading to Type 2 errors and a loss of the ability to make detailed regional studies; moreover, one does not eliminate similarity that results from more distant historical relationships among cultures [36].
Although accepted in biology, the fact that historically related cultures share similarities as a result of their common history, as well as by parallel evolution, remains controversial in anthropology, because it is often argued that cultural traits are so labile that they show no phylogenetic signature. But mapping cultural traits onto a linguistic or genetic tree reveals that many cultural traits show a strong association with phylogeny; moreover, many also appear to be historically conservative. For example, dowry and monogamy date back to the earliest known Indo-European culture, the Hittites in the 4th millennium BP, and remained predominant until recent times among Indo-European cultures, although are rare worldwide [38]. Furthermore, one recent comparative method enables us to estimate a parameter that tells us whether the tree is influencing the correlation between traits, and simplifies to a standard regression if it is not [39]. This method has been used to demonstrate an association between marriage payments and adult sex ratio in a worldwide sample [31].
Phylogenetic comparative methods avoid Galton's problem, of the non-independence of cultures, because the units of analysis are not cultures, but instances of evolutionary change. These methods test for correlated evolution in two or more traits along the branches of a tree. Cultural states, known at the tips of the tree from ethnographic data, are mapped onto the tree statistically, and their ancestral states and probable pattern of historical change along the tree branches are inferred. For constructing the phylogenetic tree (onto which cultural traits are mapped) linguistic data are currently available for more cultures than are genetic data, and so can be more useful in this type of analysis. Whereas earlier studies used traditional language classifications 33, 40 and 41, more recent studies have used the phylogenetic language trees described above 38, 42 and 43. Several phylogenetic comparative methods have been used in cross-cultural analysis; Maddison's Concentrated changes test, which uses parsimony, has been used to investigate social organization in East Africa (Figure 2; [41]) and Felsenstein's method of comparative analysis using independent contrasts 44 and 45 has been used to study the coevolution of work patterns and sexual dimorphism in stature [34].
Full-size image (24K) |
Figure 2. Inferring ancestral cultural states on a phylogeny: cattle-keeping in Bantu-speaking Africa 42 and 47. The figure shows a phylogenetic tree that was constructed using maximum parsimony and basic vocabulary for 68 African populations [3]. Ancestral states were estimated by mapping ethnographic data from Murdock's Ethnographic Atlas [53] onto the tree, using the maximum likelihood method DISCRETE [46]. Blue text and solid lines indicate that cattle are kept, whereas purple text and lines indicate that they are not; dashed blue lines indicate that cattle keeping is ambiguous. Ancestral states agree with archaeological and linguistic evidence that cattle were absent in the earliest Bantu-speaking populations, but were probably acquired twice from non-Bantu-speaking populations in East Africa, perhaps during the late 3rd millennium BP, spreading independently to Southern Africa via south-eastern and south-western routes [54]. Gain and loss of cattle are quite rare; one possible later horizontal transfer, from the Ngoni to the Cewa, is shown.
One problem with maximum parsimony reconstructions is that evolution in general, and cultural evolution in particular, is not always parsimonious. Reversals, when a trait switches and then switches back again, possibly more than once, along a branch of the tree, might be common. In methods using maximum likelihood, evolutionary models are more explicit. Thus, the rate of evolution, either fast or slow, can be estimated independently for each transition in each trait; and it is possible to test whether one model of evolution is more likely than another to give rise to the patterns of cultural diversity observed (Figure 2; [46]).
As well as testing whether two traits are correlated, it is also possible, using Pagel's DISCRETE test [46], to estimate directional relationships (even when two traits both change on one branch). This method has been used to show how pastoralism led to the evolution of lactose tolerance [40] and patrilineal descent in Africa (Figure 3, [42]). Ancestral states can be described as probabilities rather than just one or other condition 38 and 39. From the distribution of the traits in question on a tree, we can also estimate the rate of change in different traits using archaeological dates to calibrate the tree [47].
Full-size image (14K) |
Figure 3. Correlated evolution in cattle keeping and descent system in Bantu-speaking populations [47]. DISCRETE [46] was used to estimate the rate of each evolutionary transition and hence whether the rate of change depends on the state of the other trait (or, whether the two traits are coevolving), given the tree in Figure 2. Dotted arrows indicate non-significant transitions. P500 represents the probability of a particular state change over 500 years, taking into account the probability of changing state more than once. For example, it is highly probable (P500=0.81) that a matrilineal culture with cattle loses its matrilineal descent, but extremely unlikely that a cattle-keeping culture with patrilineal or mixed descent becomes matrilineal (P500=0.01). Being matrilineal and keeping cattle is an unstable cultural state; such cultures are likely to either lose their cattle or to change their descent system. By contrast, being patrilineal and keeping cattle is a stable cultural state. These results support the hypothesis that the spread of cattle led to the loss of matrilineal descent in Bantu-speaking Africa.
Phylogenetic comparative methods have been justly criticized for treating the tree as though it was known without error, whereas all phylogenetic trees, including language trees, have some uncertainties, including Indo-European, the best studied and most tree-like of the language phyla (Figure 1). In early studies 34 and 40, attempts were made to address this problem by using two or three alternative genetic and linguistic trees, thereby incorporating a range of hypotheses about past relationships among groups. It is now possible to address this problem in a more principled way, by using Bayesian MCMC techniques [48]. As we discuss above, these methods are used to construct a sample of trees in which trees are represented in proportion to their likelihood. By performing all subsequent analyses across the entire tree sample, phylogenetic uncertainty or error can then be incorporated into our analysis. To estimate an ancestral state at a particular node, the probability of that node on the tree is weighted against the probability of it taking a particular state [49]. Phylogenetic approaches to cultural evolution have often been criticized because a single tree cannot capture relationships that involved admixture among populations, but using a range of trees enables more than one evolutionary pathway to be represented for such cultures, in a comparable way to using a network model. The new Bayesian MCMC methods have been used to demonstrate, for example, the coevolution of dowry and monogamy in Indo-European cultures [43].
Conclusion
Evolutionary ecology and comparative biology bring a useful toolkit of statistical methods to cultural evolutionary studies. There is a strong tradition of comparative studies in linguistics, archaeology and anthropology 50, 51 and 52, which have informed much of our knowledge of both human migration and adaptation, but statistical methods are often viewed with suspicion. Anthropologists are fond of pointing out the complexity of cultural systems, and either using it as an excuse to not ask precise questions, or to question the validity of the assumptions of the models being used. But questions about the prevalence of horizontal transmission, or how long cultures endure, do not make sense if no phylogeny is implied. New methods are rendering many of the old debates irrelevant, as the influence of phylogeny on the data distribution can now be tested, and phylogenetic uncertainty can also be incorporated. Within the phylogenetic framework, anthropologists are now asking – and sometimes answering – such questions empirically, and with a new level of precision.
0 comentarios:
Publicar un comentario en la entrada
ciencia global al cuadrado...
Enlaces a esta entrada
Crear un enlace